ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
F. C. Schoenig, K. S. Quisenberry, D. P. Stricos, and H. Bernatowicz
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 393-398
Technical Paper | doi.org/10.13182/NSE66-A17362
Articles are hosted by Taylor and Francis Online.
The temperature dependence of the thorium-oxide resonance integral has been measured over a wide (20 to 1550 °C) temperature range. The activation method was used; the 310 keV γ ray from the decay of 233Pa was measured with a multichannel pulse-height analyzer. Measurements were performed on ThO2 rods of 0.490− and 0.353−in. diam. (surface-to-mass ratio = 0.340 and 0.465 cm2/g, respectively). The temperature dependence of the thorium-oxide resonance integral was found not to be a linear function of either (t − t0) or (√T − √T0), where t and T and centigrade and Kelvin temperature, and t0 and T0 are 20°C, and 293°K, respectively. Thus the familiar forms of the temperature dependence of the effective resonance integral, namely RI(T)/RI(T0) = 1 + α (t − t0) = 1 + β × (√T − √To) are not appropriate representations of the data. The Doppler coefficient in a 1/E spectrum is defined by α0 = [1/RI(T)] [dRI(T)/ dT] where RI(T) is the effective resonance integral of the sample excluding the 1/v contribution, and T is the temperature of the sample. It has been found that α0 = [(0.16 ± 0.01)/T] yields a good fit to the experimental data of both sample sizes. It follows that RI(T) = RI(T0) (T/T0)(0.16 ± 0.01).