ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Frigyes Reisch
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 378-384
Technical Paper | doi.org/10.13182/NSE66-A17360
Articles are hosted by Taylor and Francis Online.
In a digital computer controlled system it is possible to monitor several variables almost at the same time and control the system according to the most critical one. This is called a sampled-data control system. The purpose of the paper is to demonstrate how to handle such a problem. A simplified reactor system including neutron kinetics and fuel and cooling medium kinetics with a simple control circuit is examined. It is assumed that the reactor has a great number of cooling channels, and it is necessary to check the exit temperatures of the cooling medium as the maximum value is the limiting factor. Sampling is performed to accomplish this. The temperatures are scanned and a comparison is made between the value stored in the memory and the point being measured. The higher of the two values remains in the one word memory. After checking all the temperatures, a pulse representing the temperature of the hottest channel is sent through the sampler to the regulator and the memory is cleared. A suitable method to study the stability is the z transform analysis. The procedures and logic followed are outlined here. First, the system is defined in the terms of Laplace transformation. Then the solving of the sampled system problem by the z transform theory is shown. A digital computer program is developed. The results of several calculations show the importance of choosing the right parameter combinations.