ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
C. D. Taylor
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 347-353
Technical Paper | doi.org/10.13182/NSE66-A17355
Articles are hosted by Taylor and Francis Online.
A slab is considered to be bombarded normally by a flux of gamma rays from a nuclear explosion. As a result of this bombardment, electrons are scattered from the slab with a distribution of velocities. An approximation to the velocity distribution is obtained with the Klein-Nishina theory of the Compton process, the Bethe formula for average energy loss per unit path length of an electron penetrating matter, and a correction factor accounting for the multiple scattering of the electrons. The theoretical study reveals that the electrons are scattered out of the slab predominantly into the direction of propagation of the incident gamma rays. The velocity distribution of the electrons upon emerging from the slab is peaked near the high velocity end of the spectrum; it is also shown to be independent of the slab thickness, provided the thickness is greater than the maximum range of the recoil electrons but less than the mean free path of the gamma rays. Numerical results are obtained that confirm the statements of Karzas and Latter.