A slab is considered to be bombarded normally by a flux of gamma rays from a nuclear explosion. As a result of this bombardment, electrons are scattered from the slab with a distribution of velocities. An approximation to the velocity distribution is obtained with the Klein-Nishina theory of the Compton process, the Bethe formula for average energy loss per unit path length of an electron penetrating matter, and a correction factor accounting for the multiple scattering of the electrons. The theoretical study reveals that the electrons are scattered out of the slab predominantly into the direction of propagation of the incident gamma rays. The velocity distribution of the electrons upon emerging from the slab is peaked near the high velocity end of the spectrum; it is also shown to be independent of the slab thickness, provided the thickness is greater than the maximum range of the recoil electrons but less than the mean free path of the gamma rays. Numerical results are obtained that confirm the statements of Karzas and Latter.