ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. W. Keilholtz, J. E. Lee, Jr., R. E. Moore
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 329-338
Technical Paper | doi.org/10.13182/NSE66-A17353
Articles are hosted by Taylor and Francis Online.
An irradiation program to evaluate BeO as a moderator or fuel matrix material in nuclear power reactors has been completed at the Oak Ridge National Laboratory. The primary objectives were: to establish the limits of stability of sintered BeO of various grain sizes and densities toward fast-neutrons and to determine mechanisms of damage. Specimens were irradiated at 110, 650, and 1100 °C; fast neutron doses up to 4.7 × 1021 n/cm2 (> 1 MeV) were achieved. Both long-term and short-term irradiations were carried out in the same flux profile to determine the effect, if any, of flux intensity or dose rate on neutron damage. Specimen fracturing, volume expansion, and lattice parameter expansion all increased with increasing neutron dose and decreased with increasing temperature. However, even at the maximum temperature, some specimens disintegrated completely to powder when irradiated to doses greater than 2 × 1021 n/cm2 (> 1 MeV). The principal mode of damage under all conditions was grain boundary separation, which was caused by anisotropic crystal expansion resulting from fast-neutron produced defects. No flux intensity effect on gross damage was detected in any of the experiments. Volume expansion, a reliable criterion of neutron damage to BeO, was found to be greater in long-term than in short-term irradiations at 1100 °C at equivalent neutron doses. In-pile annealing of neutron damage at this temperature may be expected to produce a flux intensity effect on damage, but it is masked by another effect that is a function of the number of thermal cycles incurred during reactor operation. Thermal cycling appears to promote the separation of grain boundaries stressed by anisotropic crystal expansion, thereby increasing the volume expansion. To minimize neutron damage in reactor application, BeO of small grain size and low density should be used at as high a temperature and with as few thermal cycles as practicable.