ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Chi-Jung Hsu
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 305-318
Technical Paper | doi.org/10.13182/NSE66-A17351
Articles are hosted by Taylor and Francis Online.
The heat transfer characteristics for the case of laminar flow through a hexagonal channel have been determined for the following conditions: The uniform heat flux on any one side of the hexagon is identical to that on the opposite side, and may be equal to or different than those on the two adjacent sides; both the velocity and temperature profiles are fully established; the heat transfer from the walls may or may not be accompanied by simultaneous internal heat generation in the flowing fluid. Fundamental temperature solution and equations are presented which may be used to predict the temperature field, or to calculate the difference between local wall temperature and the bulk fluid temperature for a variety of cases. Methods of predicting the variation of local wall temperature are illustrated for several typical cases, including the case of uniformly distributed wall heat flux. For the latter case, it was found that appreciable temperature variation exists along the periphery of the hexagon. The circumferential variation of the local Nusselt number and the mean Nusselt number are also reported, with and without internal heat generation.