The void propagation equation is applied to predict the void response to both flow and power oscillations in a boiling liquid in forced flow through a duct with axially nonuniform power input. The analysis and the solution are presented in dimensionless form so they may be applied to various systems of practical interest. For the range of parameters examined in this paper, neither the steady-state void fraction nor the transient void response are significantly affected by the shape of the axial power-input distribution to the fluid. The predicted void response to combined flow and power-input oscillations to the fluid indicates that: 1) The void propagation velocity is about the same whether the power alone, flow alone, or power and flow together are oscillated, provided all other parameters are unchanged. 2) Flow oscillations in phase with power oscillations reduce the amplitude of the void oscillations below the values that would be present with either the same power or flow oscillations acting alone. 3) Flow oscillations 180° out of phase with power oscillations result in void oscillations whose amplitudes are roughly equal to the sum of the void amplitudes that would exist with the respective power and flow oscillations acting alone.