ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
F. W. Staub, N. Zuber
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 296-303
Technical Paper | doi.org/10.13182/NSE67-A17339
Articles are hosted by Taylor and Francis Online.
The void propagation equation is applied to predict the void response to both flow and power oscillations in a boiling liquid in forced flow through a duct with axially nonuniform power input. The analysis and the solution are presented in dimensionless form so they may be applied to various systems of practical interest. For the range of parameters examined in this paper, neither the steady-state void fraction nor the transient void response are significantly affected by the shape of the axial power-input distribution to the fluid. The predicted void response to combined flow and power-input oscillations to the fluid indicates that: 1) The void propagation velocity is about the same whether the power alone, flow alone, or power and flow together are oscillated, provided all other parameters are unchanged. 2) Flow oscillations in phase with power oscillations reduce the amplitude of the void oscillations below the values that would be present with either the same power or flow oscillations acting alone. 3) Flow oscillations 180° out of phase with power oscillations result in void oscillations whose amplitudes are roughly equal to the sum of the void amplitudes that would exist with the respective power and flow oscillations acting alone.