ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Novak Zuber, F. W. Staub
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 268-278
Technical Paper | doi.org/10.13182/NSE67-A17337
Articles are hosted by Taylor and Francis Online.
In the past it has been customary to analyze problems concerned with predicting the transient behavior of the concentration in terms of the diffusion equation and, in particular, in terms of Fick's Law. In this paper, the transient behavior of the vapor volumetric concentration in a two-phase flow system with a change of phase is formulated in terms of kinematic waves, and expressed as a propagation equation. The derived void propagation equation predicts the void response to variations of 1) power density, 2) liquid inlet velocity, 3) system pressure, 4) thermodynamic nonequilibrium in the liquid and/or in the vapor, 5) compressibilities of the liquid and of the vapor, 6) flow regime, and 7) body forces. For a boiling forced-flow system, the results of the analysis show that 1) The rate of propagation of the voids, as well as the change, i.e., the distortion of the void disturbance as it propagates along the duct, can be predicted by means of kinematic waves. 2) The rate of propagation of kinematic waves depends on the volumetric flux density of the mixture, the drift velocity of the vapor, and the vapor volumetric concentration. 3) Since the velocity of kinematic waves depends on concentration, the wave forms may develop discontinuities resulting in kinematic shock waves. 4) The void response depends, definitively, upon the flow regime and it may change, completely, with a change in flow pattern.