ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Novak Zuber, F. W. Staub
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 268-278
Technical Paper | doi.org/10.13182/NSE67-A17337
Articles are hosted by Taylor and Francis Online.
In the past it has been customary to analyze problems concerned with predicting the transient behavior of the concentration in terms of the diffusion equation and, in particular, in terms of Fick's Law. In this paper, the transient behavior of the vapor volumetric concentration in a two-phase flow system with a change of phase is formulated in terms of kinematic waves, and expressed as a propagation equation. The derived void propagation equation predicts the void response to variations of 1) power density, 2) liquid inlet velocity, 3) system pressure, 4) thermodynamic nonequilibrium in the liquid and/or in the vapor, 5) compressibilities of the liquid and of the vapor, 6) flow regime, and 7) body forces. For a boiling forced-flow system, the results of the analysis show that 1) The rate of propagation of the voids, as well as the change, i.e., the distortion of the void disturbance as it propagates along the duct, can be predicted by means of kinematic waves. 2) The rate of propagation of kinematic waves depends on the volumetric flux density of the mixture, the drift velocity of the vapor, and the vapor volumetric concentration. 3) Since the velocity of kinematic waves depends on concentration, the wave forms may develop discontinuities resulting in kinematic shock waves. 4) The void response depends, definitively, upon the flow regime and it may change, completely, with a change in flow pattern.