ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Novak Zuber, F. W. Staub
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 268-278
Technical Paper | doi.org/10.13182/NSE67-A17337
Articles are hosted by Taylor and Francis Online.
In the past it has been customary to analyze problems concerned with predicting the transient behavior of the concentration in terms of the diffusion equation and, in particular, in terms of Fick's Law. In this paper, the transient behavior of the vapor volumetric concentration in a two-phase flow system with a change of phase is formulated in terms of kinematic waves, and expressed as a propagation equation. The derived void propagation equation predicts the void response to variations of 1) power density, 2) liquid inlet velocity, 3) system pressure, 4) thermodynamic nonequilibrium in the liquid and/or in the vapor, 5) compressibilities of the liquid and of the vapor, 6) flow regime, and 7) body forces. For a boiling forced-flow system, the results of the analysis show that 1) The rate of propagation of the voids, as well as the change, i.e., the distortion of the void disturbance as it propagates along the duct, can be predicted by means of kinematic waves. 2) The rate of propagation of kinematic waves depends on the volumetric flux density of the mixture, the drift velocity of the vapor, and the vapor volumetric concentration. 3) Since the velocity of kinematic waves depends on concentration, the wave forms may develop discontinuities resulting in kinematic shock waves. 4) The void response depends, definitively, upon the flow regime and it may change, completely, with a change in flow pattern.