ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Dong H. Nguyen, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 233-241
Technical Paper | doi.org/10.13182/NSE67-A17334
Articles are hosted by Taylor and Francis Online.
The space-dependent ion production rate by fission fragments escaping from a fuel plate is studied using: 1) the Bohr stopping equation with the Thomas-Fermi approximation of the effective charge Zeff; 2) the Alexander-Gazdik (A-G) semiempirical velocity-distance relationship for fission fragments. The assumptions are: a) no scattering during slowing down; b) the nonionizing energy loss in nuclear recoils can be taken into account by increasing the w value for fission fragments over that for α particles; c) a delta-function mass distribution for the light and heavy group; and d) a monoenergetic source. The energy current carried by the fragments at a point in the outer medium is first derived, and the energy deposition per unit volume per second is obtained by taking the gradient of the energy current. Dividing the energy deposition by the w value for the medium yields the ion production rate by fission fragments in that medium. The results show that the semiempirical velocity-distance relationship gives a higher ion production rate than that given by the velocity-distance relationship derived from the Bohr stopping equation with the Thomas-Fermi approximation of the effective charge Zeff. The volumetric, spatial average ion production rate is also obtained. For a fuel plate containing 20% 235U and 80% Pt and for a flux of 6 × 1010 n/(cm2 sec), the velocity-distance relationship based on the Bohr stopping equation gives an average ion production rate of 2.0 × 1013 ion pairs/(cm3 sec) in a mixture Ne + 0.1% Ag. Using the same values for the fragment ranges, the semiempirical velocity-distance relationship yields an average volumetric ion production rate in neon higher by about 18% for the light fragment and by about 20% for the heavy fragment. According to existing experimental results on plasmas induced by fission fragments, an ion source of 2.0 × 1013 ion pairs/(cm3 sec) would yield a conductivity of about 1 × 10−3 (Ωm)−1 in the gas mixture Ne + 0.1% Ag, at 200-mm Hg and 400 °K and at an electric field of 560V/m.