ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
N. Spinks
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 182-187
Technical Paper | doi.org/10.13182/NSE67-A17329
Articles are hosted by Taylor and Francis Online.
From an empirical choice of the shadowing of one control-plate element by another, expressions are derived for the reactivity worth of systems of circumferential control plates. The expressions contain three parameters which are determined when independent calculations of three control systems have been made. The parameters can be expressed in terms of the worth of the complete control plate, the increase in reactivity due to unshadowing of an end of a control plate and the decay constant of the assumed exponentially decaying shadowing function. Application of the expressions to a particular reactor design, where circumferential control plates separate core from radial reflector, shows that the analysis is accurate for those situations where the number of control plates is not large. The analysis neglects neutron absorption by the edge of a control plate so that it underestimates reactivity worth in situations involving large numbers of control plates where the surface area of the plate edges becomes significant.