ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Richard W. Benjamin, John A. Harvey, Nathaniel W. Hill, Madhu S. Pandey, Robert F. Carlton
Nuclear Science and Engineering | Volume 85 | Number 3 | November 1983 | Pages 261-270
Technical Paper | doi.org/10.13182/NSE83-A17318
Articles are hosted by Taylor and Francis Online.
The neutron total cross sections of 249Bk and 249Cf have been measured from 0.03 to 100 eV using the Oak Ridge Electron Linear Accelerator as a source of pulsed neutrons. The 1.6-mm-diam cylindrical transmission samples initially contained up to 5.3 mg of 98% 249Bk and 2% 249Cf; 4.5 yr later, when the final measurements were made, the composition of the samples had become 2.5% 249Bk, 96.9% 249Cf and 0.6% 245Cm. Samples were cooled with liquid nitrogen to reduce Doppler broadening. Thirty-nine resonances were identified in 249Bk and analyzed using a single-level Breit-Wigner formalism. Fifty-five resonances were identified in 249Cf and analyzed using an R-matrix multilevel formalism. The resonance parameters obtained have been used to determine the average level spacings and the s-wave neutron and fission strength functions. Where possible, bound-level parameters were derived to fit the thermal neutron total cross-section data.