ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
B. A. Worley
Nuclear Science and Engineering | Volume 91 | Number 3 | November 1985 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE85-A17306
Articles are hosted by Taylor and Francis Online.
A standard assumption used in unit-cell interface-current codes is that neutrons enter each spatial region with an isotropic angular distribution. The physical interpretation of this assumption is discussed, and the magnitude of the error introduced by it is shown for a range of practical unit-cell geometries. An improvement on the calculation of first-flight transmission probabilities for one-dimensional unit cells based on limiting the neutron source angular distribution to physically possible neutron flight directions is then presented. For three-region problems, one additional calculation of a revised outer region transmission probability is sufficient for determining all the revised transmission probabilities of interest. Calculation of the revised transmission probabilities requires only minor coding changes and eliminates the improper angular redistribution of neutrons at the region boundaries.