ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
B. A. Worley
Nuclear Science and Engineering | Volume 91 | Number 3 | November 1985 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE85-A17306
Articles are hosted by Taylor and Francis Online.
A standard assumption used in unit-cell interface-current codes is that neutrons enter each spatial region with an isotropic angular distribution. The physical interpretation of this assumption is discussed, and the magnitude of the error introduced by it is shown for a range of practical unit-cell geometries. An improvement on the calculation of first-flight transmission probabilities for one-dimensional unit cells based on limiting the neutron source angular distribution to physically possible neutron flight directions is then presented. For three-region problems, one additional calculation of a revised outer region transmission probability is sufficient for determining all the revised transmission probabilities of interest. Calculation of the revised transmission probabilities requires only minor coding changes and eliminates the improper angular redistribution of neutrons at the region boundaries.