ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
P. J. Peterson and M. M. Thorpe
Nuclear Science and Engineering | Volume 29 | Number 3 | September 1967 | Pages 425-431
Technical Paper | doi.org/10.13182/NSE67-A17291
Articles are hosted by Taylor and Francis Online.
Measurements of the rate of uranium atom emission from a fissioning surface were made on uranium and uranium oxide sources. A technique was employed in which the sources could be maintained in vacuuo at all times during the experiments. It was found that at the start of an experiment the rate of emission was high, but declined with increasing reactor exposure to a low constant value of ≈6 uranium atoms ejected per fission fragment penetrating the surface for the metal and ≈38 for the oxide. Exposure of a uranium metal source to moist helium, after a constant emission rate was achieved, led to a suddenly increased rate that tended to return to that obtaining before treatment.