ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
T. J. Downar, J. A. Stillman
Nuclear Science and Engineering | Volume 94 | Number 3 | November 1986 | Pages 241-250
Technical Paper | doi.org/10.13182/NSE86-A17267
Articles are hosted by Taylor and Francis Online.
A model is developed to generate homogenized, two-group cross-section data for pressurized water reactor (PWR) fuel assemblies loaded with burnable absorbers by explicitly incorporating the effects of the neutron poison into the unpoisoned group constants. This provides the calculational freedom to use the assembly burnable absorber loading as an independent variable in dynamic search methods for optimizing low-leakage PWR core reloads. To achieve an accuracy of better than 0.2% in the assembly k∞, separate consideration is given to the absorption and scattering perturbations, as well as to the spectrum-hardening effects caused by the presence of burnable absorbers in the assembly. The model was validated first by comparison of unit assembly cross sections to data from reference calculations and then by use of the model in the Electric Power Research Institute nodal code SIMULATE-E and comparison to reference core power distributions.