ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
M. J. Ohanian, R. S. Booth, R. B. Perez
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 95-103
Technical Paper | doi.org/10.13182/NSE67-A17246
Articles are hosted by Taylor and Francis Online.
Neutron-wave propagation in moderating media is investigated within the framework of the diffusion approximation to the Boltzmann equation, using a realistic scattering model and the eigenfunction expansion method. The eigenfunctions are obtained from the thermalization theory solution to the exponential experiment with their corresponding eigenvalues being the fundamental and higher diffusion lengths of the medium. Expanding the energy dependence of the neutron-wave problem in these eigenfunctions leads to a simpler and more accurate secular determinant than that obtained from a Laguerre polynomial expansion. Solving the secular determinant yields the squared complex inverse relaxation lengths for the asymptotic energy mode and for the continuum energy modes. A discrete energy formulation, Simpson's rule integration scheme, and the Jacobi method of matrix diagonalization are used in the numerical solution to the eigen-value problem. The dispersion law for graphite, obtained by direct solution of the complex secular determinant, is compared with experimental results. This investigation indicates that high-energy-mode contamination will not seriously affect neutron-wave experiments in graphite in the frequency range where diffusion and thermalization parameters can be obtained.