ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mary Alberg, Harold Beck, Keran O'Brien, James E. McLaughlin
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 65-74
Technical Paper | doi.org/10.13182/NSE67-A17243
Articles are hosted by Taylor and Francis Online.
Differential energy and angle spectra from a point isotropic 137Cs source in an effectively infinite medium of water have been determined for γ-ray penetrations of 1, 2, 3, and 4 mean-free-paths at 15° intervals. The spectra were unfolded from scintillation spectrometer measurements by an analytic method based on the Scofield iteration scheme. An integration of the results over all angles yielded differential energy spectra which were consistent with multigroup transport calculations. The measurements were also carried out in a condensed, air-like medium. A comparison of the results with those obtained in water showed that the differences in attenuation coefficients between the two materials caused spectral differences only at very low energies for small separations between source and detector, which were consistent with theoretical calculations.