ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Keiichi Saito, Yukichi Taji
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 54-64
Technical Paper | doi.org/10.13182/NSE67-A17242
Articles are hosted by Taylor and Francis Online.
Statistical aspects of neutron transport in low-power reactors are studied from the viewpoint of branching processes. The probability generating function of a neutron population originating from an ancestor neutron is expressed in the form of the factorial moment expansion, and it is shown how a factorial moment is constructed out of the lower-order moments. The formalism is based on a physical statement that neutrons occupying a certain set of the prescribed space-time points are composed of subgroups which are chain related to the closest common branching point. The statement is found to be a natural extension of Feynman’s derivation of the well-known formula for Variance-to-Mean Ratio Method of measuring reactor noise. The form of the factorial moment expansion of the one-ancestor problem is applied to counting statistics in reactors with random sources. The result turns out to be the factorial cumulant expansion of the probability generating function of count number. It is shown that all the higher factorial cumulants are successively constructed out of the lower orders. New adjoint fields are introduced. It is pointed out that analysis of reactor noise depends on two models of introducing extraneous neutrons into the system, i.e., the random source model and the burst-of-neutrons model.