ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
L. G. Neal, S. M. Zivi
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 25-38
Technical Paper | doi.org/10.13182/NSE67-A17240
Articles are hosted by Taylor and Francis Online.
This paper describes a comparative study of analytical models for calculating the hydrodynamic stability of natural-circulation boiling systems and experimental data. The models were evaluated by comparing their physical assumptions, the mathematical simplifications, the methods of solving the equations, and, in some cases, their predicting abilities. The predicting abilities of the models were determined by programming them for a digital computer and using the program to predict experimental loop stability. The models all have many common features. Each is a statement and solution of the conservation equations for the two-phase and single-phase fluids, derived and applied using essentially the same physical assumptions. In all of the models studied, the dynamics of the instability can be described as linear feedback between flow rate and vapor volume. Although some of the models include nonlinearities in the flow-void interaction, the non-linearities are not important in determining the instability threshold, but merely affect the limit cycle oscillation. All the models contain empirical correlations for slip ratio, friction, and heat transfer derived from steady-state data. There are three major differences between the models: 1) the different slip ratio and friction assumptions or correlations, 2) the extent to which distributed parameters are spatially lumped, and 3) the use of linearized small perturbations and computation in the frequency domain, or integration of the differential equations in time with retention of nonlinear effects. The first two differences have important effects on the accuracy of the models' predictions, whereas the third difference is a matter of convenience. The STABLE-3 program by Jones is the most reliable, and predicts the threshold of instability for loop experiments within 20% for about 70% of the tests. The model of Jahnberg is a distant second in predicting loop stability. The application of Jones' FABLE program, which includes the STABLE-3 hydrodynamics in addition to feedback from the reactor kinetics equations, to the EBWR produces a calculated instability threshold in agreement with the reported 120 MW. The important destabilizing mechanism in the EBWR arises from differences between the plate-type and the rod-bundle-type fuel assemblies in the core in their steam void response to power disturbances. These dissimilarities allow the excitation of a hydrodynamic resonance interaction between the regions with the different fuel assemblies that lowers the instability threshold.