ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Mark Goldsmith
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 111-124
Technical Paper | doi.org/10.13182/NSE17-111-124
Articles are hosted by Taylor and Francis Online.
A number of problems in reactor analysis require the determination of the second largest reactor eigenvalue. If one limits himself to a one-velocity description of neutron diffusion, this eigenvalue and the corresponding eigenfunction may be determined by familiar methods. When (as is almost universally the case) one must consider more than one energy group of neutrons, the neutron diffusion equations are no longer self-adjoint and the customary analysis yields information only about the eigenfunction of largest eigenvalue. In the present work the symmetry properties of reactor eigenfunctions have been applied to the calculation of the first few reactor eigenvalues. Each reactor has geometrical symmetry elements that enable one to define what is known as the symmetry group of the reactor, and the transformations of the reactor under the elements of this group enable one to determine the degeneracy and symmetry properties of the reactor eigenfunctions. After a detailed review of the necessary group theoretical fundamentals, the eigenfunctions of a reactor with a trigonal control element are investigated and the adaptation of an existing diffusion theory code to the computation of higher reactor eigenvalues discussed.