ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
R. B. Perez, R. E. Uhrig
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 90-100
Technical Paper | doi.org/10.13182/NSE63-A17214
Articles are hosted by Taylor and Francis Online.
Use of a sinusoidally modulated source of neutrons is equivalent to “poisoning” a moderating medium with a 1/v poison. The inverse relaxation length of the neutron wave amplitude and the variation of the phase angle as a function of position are dependent upon the frequency of modulation and the neutron diffusion and thermalization parameters of the media in which the waves are being propagated. The neutron wave technique allows “poisoning” of solid moderators and provides a means of performing poisoning experiments for measuring nuclear properties of solid as well as liquid moderators. It should supplement the recent use of poisoning techniques in an attempt to reconcile discrepancy in the diffusion and thermalization parameters of moderators, as measured by pulsed neutron techniques. The neutron wave technique and the pulsed neutron technique are supplementary from an experimental viewpoint.