ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
L. E. Beghian, A. E. Profio, J. Weber, S. Wilensky
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 82-90
Technical Paper | doi.org/10.13182/NSE63-A17213
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the 1 Mev range are injected into various size assemblies of iron. The flux in these assemblies is observed to decay exponentially with characteristic nanosecond decay constants (λ). λ is shown to be composed of a sum of terms which represent loss of neutrons by leakage and through energy degradation by both nonelastic and elastic scattering. The sum of these two last effects can be represented by a total removal cross section which can be determined by measuring λ as a function of assembly size. A theoretical development is given for calculating the contribution to this total cross section due to elastic scattering; hence the total nonelastic cross section can be determined. Nonelastic cross sections for iron have been measured by this technique in the range of primary neutron energies 0.8–1.5 Mev.