ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
G. G. Gaul, W. L. Pearl
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 30-41
Technical Paper | doi.org/10.13182/NSE63-A17207
Articles are hosted by Taylor and Francis Online.
Type 304 stainless steel cladding material has been corrosion tested under heat transfer conditions at metal temperatures up to 1300°F in specially constructed out-of-pile superheat facilities. The hydrogen and oxygen contents of the steam have been controlled to simulate that found in boiling water reactor type systems. Good corrosion resistance and low metal release to system up to metal temperatures of 1100°F were experienced with an expected pattern of an initially high corrosion rate that decreased to a lower constant rate with time up to 4500 hr. A compositionally disturbed layer developed adjacent to the scale in the 1100°F to 1300°F metal temperature range on the heat transfer specimens. The layer continued to grow with time but had little effect on the corrosion rate within the 2500 hours of testing.