ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 8-17
Technical Paper | doi.org/10.13182/NSE63-A17205
Articles are hosted by Taylor and Francis Online.
The angular dependence of the solution of the monoenergetic Boltzmann equation in slab geometry with isotropic scattering is expanded classically in the set of Jacobi polynomials which are orthogonal in the interval −1 to +1 with respect to the weight function w(μ) = (1 − μ)α (1 + μ)β. The low order solution obtained by retaining only the first two terms in the expansion is investigated in detail. In this low order it is shown that a proper choice of α and β leads to the exact asymptotic transport eigenvalue. With this choice of α and β a significant improvement in the linear extrapolation distance and the critical size of a bare slab over the usual (P − 1) diffusion theory is obtained. However, it is shown that, in general, the truncated set of classical Jacobi equations does not conserve neutrons. A modification in the truncation procedure is made in order to obtain neutron conservation while retaining the advantages of the Jacobi expansion. The choices α = β = -½ and α = β = −1 are discussed in some detail and shown to have advantages over the corresponding Legendre (α = β = 0) expansion.