ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Ernest R. Venerus and M. Necati Ozisik
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 122-130
Technical Paper | doi.org/10.13182/NSE66-A17195
Articles are hosted by Taylor and Francis Online.
Deposition of fission products from an isothermal laminar gas stream to the surfaces of a circular tube is theoretically investigated for a source releasing a radioactive precursor into the gas stream at a uniform rate at the origin. A slug velocity profile is assumed. In solving the partial differential equations of the problem, two different models are examined as boundary conditions to couple the equations. The first model, which is referred to as the Resistance Model, is applicable when the surface concentration of the deposited precursor is small or removal of particles from the surface is negligible; and it is equivalent to assuming a fictitious unknown resistance to mass transfer at the wall surface. The boundary value problem of mass transfer based on the resistance model has been solved for the transient conditions and analytical relations are derived for the concentration of fission products in the gas stream and on the tube surface. In the second model, which is referred to as the Transport Model, a more detailed account is taken of the actual physical transport process in the immediate vicinity of the conduit surface. The removal of precursor from the surface is related to the adsorption energy of the precursor and the temperature of the surface. Removal from the gas stream in the immediate vicinity of the conduit surface is described by a stream removal coefficient which is obtained from the kinetic theory of gases. The boundary value problem based on the transport model has been solved for the steady state condition only. The transport model has been applied to experiments on deposition of radioactive isotopes from laminar gas streams and adsorption energies for some radioactive isotopes are determined. Correlation of the transport model with experiments provides a useful means for obtaining the adsorption energies of radioactive isotopes on metal surfaces.