ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ernest R. Venerus and M. Necati Ozisik
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 122-130
Technical Paper | doi.org/10.13182/NSE66-A17195
Articles are hosted by Taylor and Francis Online.
Deposition of fission products from an isothermal laminar gas stream to the surfaces of a circular tube is theoretically investigated for a source releasing a radioactive precursor into the gas stream at a uniform rate at the origin. A slug velocity profile is assumed. In solving the partial differential equations of the problem, two different models are examined as boundary conditions to couple the equations. The first model, which is referred to as the Resistance Model, is applicable when the surface concentration of the deposited precursor is small or removal of particles from the surface is negligible; and it is equivalent to assuming a fictitious unknown resistance to mass transfer at the wall surface. The boundary value problem of mass transfer based on the resistance model has been solved for the transient conditions and analytical relations are derived for the concentration of fission products in the gas stream and on the tube surface. In the second model, which is referred to as the Transport Model, a more detailed account is taken of the actual physical transport process in the immediate vicinity of the conduit surface. The removal of precursor from the surface is related to the adsorption energy of the precursor and the temperature of the surface. Removal from the gas stream in the immediate vicinity of the conduit surface is described by a stream removal coefficient which is obtained from the kinetic theory of gases. The boundary value problem based on the transport model has been solved for the steady state condition only. The transport model has been applied to experiments on deposition of radioactive isotopes from laminar gas streams and adsorption energies for some radioactive isotopes are determined. Correlation of the transport model with experiments provides a useful means for obtaining the adsorption energies of radioactive isotopes on metal surfaces.