ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Amir N. Nahavandi and George J. Bohm
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 80-89
Technical Paper | doi.org/10.13182/NSE66-A17190
Articles are hosted by Taylor and Francis Online.
The dynamic response of reactor structural components is obtained by direct numerical solution of the differential equations for a linear or a nonlinear situation considering the components to be a continuous network. The equation of motion of each element is expressed in spatial finite-difference form and integrated to determine deflections as a function of time. The deflection curves and excitation frequencies in a vertical beam, sinusoidally excited at the top and striking an elastic spring at the bottom, are determined satisfactorily as an example of the method. The pattern in this nonlinear system is shown to be similar to the modal behavior of linear structures. The single-valuedness and the lack of discontinuous jumps in the response curve characterize the dynamic stability of the system. The time variation of the beam-end displacements demonstrate the existence of nonuniform distributions of sub- and super-harmonics in the response frequency spectrum. A numerical stability analysis is performed for the problem under study and a criterion for the convergence of the numerical solution is developed. This criterion proved to be satisfactory for the analysis.