ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Amir N. Nahavandi and George J. Bohm
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 80-89
Technical Paper | doi.org/10.13182/NSE66-A17190
Articles are hosted by Taylor and Francis Online.
The dynamic response of reactor structural components is obtained by direct numerical solution of the differential equations for a linear or a nonlinear situation considering the components to be a continuous network. The equation of motion of each element is expressed in spatial finite-difference form and integrated to determine deflections as a function of time. The deflection curves and excitation frequencies in a vertical beam, sinusoidally excited at the top and striking an elastic spring at the bottom, are determined satisfactorily as an example of the method. The pattern in this nonlinear system is shown to be similar to the modal behavior of linear structures. The single-valuedness and the lack of discontinuous jumps in the response curve characterize the dynamic stability of the system. The time variation of the beam-end displacements demonstrate the existence of nonuniform distributions of sub- and super-harmonics in the response frequency spectrum. A numerical stability analysis is performed for the problem under study and a criterion for the convergence of the numerical solution is developed. This criterion proved to be satisfactory for the analysis.