ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Charles N. Kelber and Philip H. Kier
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 67-72
Technical Paper | doi.org/10.13182/NSE66-A17188
Articles are hosted by Taylor and Francis Online.
A model is developed for the estimation of the Doppler effect from the unresolved energy region for fissile nuclides. For energy intervals that contain enough resonances for the reaction rates to be statistically independent of neighboring intervals, many resonance structures, or ladders, are generated by a random process that preserves the average widths and strength function. For each ladder, the relative changes in the absorption and the fission rates with temperature are computed, including overlap effects. This procedure yields estimates of mean quantities and the dispersion of values about the mean when the reaction rates are regarded as random variables. The Doppler effect and its variance are obtained by incorporating these resonance integral calculations into a multigroup-perturbation theory formulation., This model has been used to estimate the Doppler effect for 239Pu in the Codd and Collins mixture. For a temperature change from 300 to 600°K, the contributions to Ak/k from the unresolved region (215 eV to 10 keV) and the resolved region ( < 215 eV) were calculated to be 290 X 10"6 and 440 X10-6, respectively. The probable error, or ^2/3 standard deviation in the Doppler effect, assumed to be solely from the unresolved region, was ± 290 X 10" 6.