ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Sagid Salah and T. F. Parkinson
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 59-66
Technical Paper | doi.org/10.13182/NSE66-A17187
Articles are hosted by Taylor and Francis Online.
We have measured the thermal-neutron spectrum throughout the unit cell of several D 20-moderated natural-uranium lattices using both differential and integral methods. For the differential measurements the neutron diffraction method was used, and for the integral measurements, space-dependent spectra were deduced from activation of gold and lutetium detectors. To obviate the numerous corrections normally required for the diffraction method, the total efficiency of the crystal spectrometer was determined using a beam with a known spectrum from a D2O thermal column. Satisfactory agreement was found between the activation measurements and theoretical results obtained with the THERMOS Code. However, effective neutron temperature changes derived from the differential spectra were systematically lower than the THERMOS calculations. Some uncertainty remains as to the precision of the differential spectra due to the method of calibration and the perturbing effect of the beam tube. Nevertheless, most of the measured spectra are in reasonably good agreement with calculated spectra.