ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
W. G. Pettus, and M. N. Baldwin
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 34-46
Technical Paper | doi.org/10.13182/NSE66-A17185
Articles are hosted by Taylor and Francis Online.
Measurements of the Doppler effect in resonant neutron capture have been made for samples having a nonuniform temperature distribution. These measurements were made on thorium and thorium-dioxide rods of approximately 3/4-in. diam. An activation technique was used, and the samples were exposed in a cadmium thimble at the center of a pool research reactor. The activated samples were dissolved, and the 233Pa was separated out and gamma counted. The Doppler coefficients for identical samples were determined with an axial heat source and with a peripheral heat source. In the axially heated cases, measurements were made with radial temperature drops ranging up to 185°C for the metal samples, and up to 1000°C for the oxide samples. In the peripherally heated cases, the temperature was uniform through the samples, and measurements were made with the temperature ranging up to about 350°C for both metal and oxide samples. The results show that the Doppler coefficient as a function of the average sample temperature is essentially the same for both axial and peripheral heating over the temperature range investigated. The measured values of the Doppler coefficients for the nonuniform temperature cases were (85 ± 5) × 10-4 and (95 ± 19) × lO-4 (°K)-½ for thorium metal and oxide, respectively.