ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
W. G. Pettus, and M. N. Baldwin
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 34-46
Technical Paper | doi.org/10.13182/NSE66-A17185
Articles are hosted by Taylor and Francis Online.
Measurements of the Doppler effect in resonant neutron capture have been made for samples having a nonuniform temperature distribution. These measurements were made on thorium and thorium-dioxide rods of approximately 3/4-in. diam. An activation technique was used, and the samples were exposed in a cadmium thimble at the center of a pool research reactor. The activated samples were dissolved, and the 233Pa was separated out and gamma counted. The Doppler coefficients for identical samples were determined with an axial heat source and with a peripheral heat source. In the axially heated cases, measurements were made with radial temperature drops ranging up to 185°C for the metal samples, and up to 1000°C for the oxide samples. In the peripherally heated cases, the temperature was uniform through the samples, and measurements were made with the temperature ranging up to about 350°C for both metal and oxide samples. The results show that the Doppler coefficient as a function of the average sample temperature is essentially the same for both axial and peripheral heating over the temperature range investigated. The measured values of the Doppler coefficients for the nonuniform temperature cases were (85 ± 5) × 10-4 and (95 ± 19) × lO-4 (°K)-½ for thorium metal and oxide, respectively.