ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
A. Ziya Akcasu, R. K. Osborn
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 13-25
Technical Paper | doi.org/10.13182/NSE66-A17183
Articles are hosted by Taylor and Francis Online.
The space- and energy-dependent theory of reactor-noise analysis has been developed using Langevin's technique starting from the transport equations. The theory includes delayed neutrons. The correlation function and the power spectral density for the detection rate, as well as for the neutron density, have been obtained. The application of the general theory to simple reactor models has been discussed and illustrated by considering the one-speed transport and one-speed diffusion approximations. The connection between Langevin's technique and the doublet theory based on the Liouville equation has been established. It has been found that both formulations yield identical results and that the postulates of Langevin's technique are justified for the study of neutron distributions.