ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
K. Serdula
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE66-A17182
Articles are hosted by Taylor and Francis Online.
Results of an experimental investigation indicate an improvement in accuracy of radial bucklings derived from activation distributions measured in reflected cylindrical systems can be obtained if: resultant activities are fitted to radial spatial functions derived from homogeneous two-group diffusion theory (i.e., Activity (R) = A J0(λR) + C I0(βR), where λ2 = radial buckling), and activation distributions are measured with a detector whose ratio of is high. Radial bucklings derived from activation distributions measured with In, Au and Cu foils in the same core showed that values derived from the In data were the least sensitive to the region of the analyzed. On the basis of a two-group model, radial activation distributions measured with a detector in a reflected core which satisfies the following conditions , where S1 = fast-thermal coupling coefficient, will yield a J0 distribution only, because the increase in activity from the increase in thermal flux is cancelled by the decrease in activity from the decrease in fast flux near the core-reflector boundary. Conclusions are substantiated by theoretical predictions based on the radial variation of fluxes calculated from two-group homogeneous diffusion theory.