ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Serdula
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE66-A17182
Articles are hosted by Taylor and Francis Online.
Results of an experimental investigation indicate an improvement in accuracy of radial bucklings derived from activation distributions measured in reflected cylindrical systems can be obtained if: resultant activities are fitted to radial spatial functions derived from homogeneous two-group diffusion theory (i.e., Activity (R) = A J0(λR) + C I0(βR), where λ2 = radial buckling), and activation distributions are measured with a detector whose ratio of is high. Radial bucklings derived from activation distributions measured with In, Au and Cu foils in the same core showed that values derived from the In data were the least sensitive to the region of the analyzed. On the basis of a two-group model, radial activation distributions measured with a detector in a reflected core which satisfies the following conditions , where S1 = fast-thermal coupling coefficient, will yield a J0 distribution only, because the increase in activity from the increase in thermal flux is cancelled by the decrease in activity from the decrease in fast flux near the core-reflector boundary. Conclusions are substantiated by theoretical predictions based on the radial variation of fluxes calculated from two-group homogeneous diffusion theory.