ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
K. Serdula
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE66-A17182
Articles are hosted by Taylor and Francis Online.
Results of an experimental investigation indicate an improvement in accuracy of radial bucklings derived from activation distributions measured in reflected cylindrical systems can be obtained if: resultant activities are fitted to radial spatial functions derived from homogeneous two-group diffusion theory (i.e., Activity (R) = A J0(λR) + C I0(βR), where λ2 = radial buckling), and activation distributions are measured with a detector whose ratio of is high. Radial bucklings derived from activation distributions measured with In, Au and Cu foils in the same core showed that values derived from the In data were the least sensitive to the region of the analyzed. On the basis of a two-group model, radial activation distributions measured with a detector in a reflected core which satisfies the following conditions , where S1 = fast-thermal coupling coefficient, will yield a J0 distribution only, because the increase in activity from the increase in thermal flux is cancelled by the decrease in activity from the decrease in fast flux near the core-reflector boundary. Conclusions are substantiated by theoretical predictions based on the radial variation of fluxes calculated from two-group homogeneous diffusion theory.