ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
K. Serdula
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE66-A17182
Articles are hosted by Taylor and Francis Online.
Results of an experimental investigation indicate an improvement in accuracy of radial bucklings derived from activation distributions measured in reflected cylindrical systems can be obtained if: resultant activities are fitted to radial spatial functions derived from homogeneous two-group diffusion theory (i.e., Activity (R) = A J0(λR) + C I0(βR), where λ2 = radial buckling), and activation distributions are measured with a detector whose ratio of is high. Radial bucklings derived from activation distributions measured with In, Au and Cu foils in the same core showed that values derived from the In data were the least sensitive to the region of the analyzed. On the basis of a two-group model, radial activation distributions measured with a detector in a reflected core which satisfies the following conditions , where S1 = fast-thermal coupling coefficient, will yield a J0 distribution only, because the increase in activity from the increase in thermal flux is cancelled by the decrease in activity from the decrease in fast flux near the core-reflector boundary. Conclusions are substantiated by theoretical predictions based on the radial variation of fluxes calculated from two-group homogeneous diffusion theory.