ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. Shure
Nuclear Science and Engineering | Volume 85 | Number 1 | September 1983 | Pages 51-55
Technical Note | doi.org/10.13182/NSE83-A17151
Articles are hosted by Taylor and Francis Online.
The contributions from actinides to the decay heat and the decay rate relative to those from fission products in highly irradiated 235U-enriched uranium has been assessed. This assessment, which is based on measured and associated calculated actinide concentrations in a sample of uranium in which the 235U had been burned to 17% of its original >97% content (i.e., to ∼17% 235U), indicates that for most practical times (<108 s) after reactor shutdown, the actinide contribution to the decay heat and to the decay rate is a reasonably small fraction (<7%) of the total and comes mainly from 237U, 238Np, and 238Pu. These results differ from those for uranium only slightly enriched in 235U.