ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
L. Meskó, R. Kozma
Nuclear Science and Engineering | Volume 88 | Number 1 | September 1984 | Pages 88-93
Technical Note | doi.org/10.13182/NSE84-A17142
Articles are hosted by Taylor and Francis Online.
Using the Markovian description of stochastic processes, the fluctuations in pressurized water reactor cores (for example, temperature and bubble population fluctuations) are modeled. The model includes one-dimensional space and time dependence. Fluctuations are described with the help of a single stochastic variable N(z, t). Generally this approach is not satisfactory in practical problems, but in this way spatial effects can be investigated by a simple model. For this case, connections between moments of N(z, t) are derived. These moments are calculated both for transient and steady-state processes. Introducing spectral density functions in frequency and wave-number domains, a condition is given for the validity of the point model approach.