ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
B. R. Wienke, B. L. Lathrop, J. J. Devaney
Nuclear Science and Engineering | Volume 88 | Number 1 | September 1984 | Pages 71-76
Technical Paper | doi.org/10.13182/NSE84-A17140
Articles are hosted by Taylor and Francis Online.
Simple temperature-corrected cross sections, which replace the static Klein-Nishina set in a one-to-one manner, are developed for Monte Carlo applications. The reduced set is obtained from a nonlinear least-squares fit to the exact photon-Maxwellian electron cross sections by using a Klein-Nishina-like formula as the fitting equation. Two parameters are sufficient, and accurate to two decimal places, to explicitly fit the exact cross sections over a range of 0 to 100 keV in electron temperature and 0 to 1 MeV in incident photon energy. Since the fit equations are Klein-Nishina-like, existing Monte Carlo code algorithms using the Klein-Nishina formula can be trivially modified to accommodate corrections for a moving Maxwellian electron background. The simple two parameter scheme and other fits are presented and discussed and comparisons with exact predictions are exhibited. The fits are made to the total photon-Maxwellian electron cross section and the fitting parameters can be consistently used in both the energy conservation equation for photon-electron scattering and the differential cross section, as they are presently sampled in Monte Carlo photonics applications. The fit equations are motivated in a very natural manner by the asymptotic expansion of the exact photon-Maxwellian effective cross-section kernel. A probability distribution is also obtained for the corrected set of equations.