ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Magdi Ragheb, Saman Behtash
Nuclear Science and Engineering | Volume 88 | Number 1 | September 1984 | Pages 16-36
Technical Paper | doi.org/10.13182/NSE84-A17137
Articles are hosted by Taylor and Francis Online.
A model for the analysis of the growth rates of the reactor economies, the associated material flows, the energy balances of a system of coupled D-3He satellites and 3He generators, and fusion, hybrid, and fission reactors is developed to explore different system configurations and implementation strategies. Hybrids or fuel factories have low electrical support ratios ranging from 0.08 to 0.17. For generators based on the deuterium-tritium fuel cycle, the electrical support ratios range from 1.1, at 10 yr after implementation, to 2.4 after 50 yr. For generators based on the semi-catalyzed deuterium-deuterium (SCD) fuel cycle, these numbers are 2.5 and 4.5, respectively. The maximization of the support ratios is associated with a saturation tritium inventory of 3 kg/MW(thermal) of SCD fusion generators and 0.63 kg/MW(thermal) of the total installed capacity. The options available for system implementation using large support ratios with tritium breeding or low support ratios without tritium breeding are discussed.