ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
K. O. Ott, F. M. Clikeman, G. A. Harms
Nuclear Science and Engineering | Volume 88 | Number 1 | September 1984 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE84-A17136
Articles are hosted by Taylor and Francis Online.
The main results of several years of research on neutron and gamma-ray physics in the Purdue Fast Breeder Blanket Facility (FBBF) are summarized. Presented are neutron capture rates in 238U, 232Th, gold, tungsten, and manganese, and fission rates in 235U and 239Pu. Neutron spectra are determined from proton recoil energies over the range from 2 keV to 2 MeV. The energy deposition of the gamma-ray field is measured with thermoluminescent detectors. Since the FBBF is a source-driven facility, all results are obtained on an absolute basis and are compared with corresponding calculations. Most of the results are presented as calculated/experimental trajectories except for the neutron spectra. The absolute and complete experimental results will be presented in separate papers. The comprehensive and coherent interpretation of deviations between calculated and experimental results is explored. Three major deviations are identified; they concern the “bulk” of the neutron population, the low-energy wing of the spectrum, and the space dependency of resonance absorption.