ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J. F. Carew, P. Neogy
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 117-122
Technical Note | doi.org/10.13182/NSE85-A17134
Articles are hosted by Taylor and Francis Online.
An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a pressurized water reactor rod ejection accident. In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross-section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first-order modal excitation strength is determined by the spatial overlap between the initial and final flux states and the cross-section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations.