ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
K. Swaminathan, S. P. Tewari
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 95-108
Technical Paper | doi.org/10.13182/NSE85-A17131
Articles are hosted by Taylor and Francis Online.
A thermal neutron inelastic scattering kernel for polyethylene (PE) of any degree of crystallinity based on a recently proposed dynamic model is suggested. The dynamic model takes proper account of the anisotropic linear chain structure of PE that gives rise to an acoustic phonon frequency distribution function, which is quite different from the usual Debye type, and that has been successful in explaining the observed temperature variation of the specific heat of PE of different degrees of crystallinity. The expressions for zero-phonon and one-phonon neutron scattering cross sections are derived by making use of the frequency distribution function. The kernel incorporates the contribution of two-phonon acoustic modes and also that of optical modes. The kernel has been used to calculate the total scattering cross sections of thermal neutrons from crystalline and noncrystalline PE, including amorphous PE. The calculated values of total scattering cross sections are in reasonable agreement with the experimental results of 60 and 98% crystalline PE. The calculated values for amorphous PE are not very different from those for crystalline PE. Thus the total scattering cross sections are found to be independent of the degree of crystallinity in agreement with the experimental results. The details of the contribution of various scattering processes to the total scattering cross section for crystalline and amorphous PE are reported. The kernel has also been used to study the γij-neutron condensed system energy exchange observable for both crystalline and amorphous PE and has been compared with the equivalent isotropic Debye kernel. The γij values are found to be almost independent of the degree of PE crystallinity. Also, the γij values, as determined using the suggested scattering kernel, are quite different from those calculated using the Debye kernel, showing thereby the importance of the linear chain structure of three-dimensional PE crystal.