ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Pramila Mohan, Rajesh Mohan, Feroz Ahmed, L. S. Kothari, Hiroyuki Kadotani
Nuclear Science and Engineering | Volume 94 | Number 1 | September 1986 | Pages 87-93
Technical Note | doi.org/10.13182/NSE86-A17121
Articles are hosted by Taylor and Francis Online.
The multigroup space eigenvalues and eigenfunctions of a one-dimensional steady-state diffusion theory operator have been used to study the spatial behavior of a fast neutron field in certain thorium systems. The nuclear data used are from the 26-group ABBN data set. It has been shown that for a fast thorium system, unlike a fast uranium system, all the space eigenvalues lie in the continuum and no discrete space eigenvalue exists. A fast thorium system behaves more like a fast nonmultiplying system. The spectra shifts continuously to lower energies as one moves away from the source; however, pseudoasymptotic conditions are established in certain distance ranges. In order to test the validity of the diffusion theory and eigenfunction expansion method, results have also been obtained using transport theory. In all cases the two sets of results are in reasonably good agreement. To see the effect of geometry, the spectra at certain distances inside a 1-m-thick thorium slab are compared with the corresponding spectra inside a thorium sphere of 1-m radius. At all distances the normalized slab and sphere spectra are nearly the same.