ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Emily R. Wolters, Edward W. Larsen, William R. Martin
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 286-299
Technical Paper | doi.org/10.13182/NSE12-72
Articles are hosted by Taylor and Francis Online.
In this paper, two modifications to improve the efficiency of Lee et al.'s recently proposed “CMFD [coarse-mesh finite difference]-accelerated Monte Carlo” method for neutron criticality problems are presented and tested. This CMFD method employs standard Monte Carlo techniques to estimate nonlinear functionals (ratios of integrals), which are used in low-order CMFD equations to obtain the eigenvalue and discrete representations of the eigenfunction. In a “feedback” procedure, the Monte Carlo fission source is then modified to match the resulting CMFD fission source. The proposed new methods differ from the CMFD-accelerated Monte Carlo method only in the definition of the nonlinear functionals. The new methods are compared with the CMFD-accelerated Monte Carlo method for two high-dominance-ratio test problems. All of the hybrid methods rapidly converge the Monte Carlo fission source, enabling a large reduction in the number of inactive cycles. However, the new methods stabilize the fission source more efficiently than the CMFD-accelerated Monte Carlo method, enabling a reduction in the number of active cycles as well. Also, in all the hybrid methods, the apparent variance of the eigenfunction is nearly equal to the real variance, so the real statistical error is well estimated from a single calculation. This is a major advantage over the standard Monte Carlo method, in which the real variance is typically underestimated due to intercycle correlations.