ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kyoung O. Lee, Robin P. Gardner
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 264-285
Technical Paper | doi.org/10.13182/NSE12-23
Articles are hosted by Taylor and Francis Online.
Pebble motions in pebble-bed reactors (PBRs) have been investigated by generating pebble motion histories with Monte Carlo molecular dynamics simulations. This extension of molecular dynamics to PBR-sized pebble motion is accomplished by splitting the simulation into two parts. The first part simulates the dropping of pebbles into the PBR with a closed exit that allows one to obtain the correct initial placement of all pebbles within the pebble bed. The second part simulates what happens when the PBR exit is opened and normal pebble flow begins. Using this combined approach the pebble piling up and subsequent discharge are predicted. Simulations have been conducted with this approach by monitoring the mass flow rate, the pebble piling up, and the subsequent discharge for a range of pertinent parameters using the Hertz-Mindlin force for pebble interactions. The simulation output data include the force, velocity, and position of the pebbles as a function of time. Note that arching or locked flow, a very important phenomenon, is predicted by this approach under certain operating conditions. Using this approach, PBR results (including arching) for a range of the parameters of interest are reported and are discussed herein.