ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Oak Ridge community roundtable explores workforce challenges
Federal and contractor officials, community leaders, and educators gathered in Knoxville, Tenn., on October 29 for a roundtable event focused on ensuring the Oak Ridge Office of Environmental Management (OREM) and its partners have the resources and infrastructure needed to support a robust, talented workforce in the years ahead.
Kyoung O. Lee, Robin P. Gardner
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 264-285
Technical Paper | doi.org/10.13182/NSE12-23
Articles are hosted by Taylor and Francis Online.
Pebble motions in pebble-bed reactors (PBRs) have been investigated by generating pebble motion histories with Monte Carlo molecular dynamics simulations. This extension of molecular dynamics to PBR-sized pebble motion is accomplished by splitting the simulation into two parts. The first part simulates the dropping of pebbles into the PBR with a closed exit that allows one to obtain the correct initial placement of all pebbles within the pebble bed. The second part simulates what happens when the PBR exit is opened and normal pebble flow begins. Using this combined approach the pebble piling up and subsequent discharge are predicted. Simulations have been conducted with this approach by monitoring the mass flow rate, the pebble piling up, and the subsequent discharge for a range of pertinent parameters using the Hertz-Mindlin force for pebble interactions. The simulation output data include the force, velocity, and position of the pebbles as a function of time. Note that arching or locked flow, a very important phenomenon, is predicted by this approach under certain operating conditions. Using this approach, PBR results (including arching) for a range of the parameters of interest are reported and are discussed herein.