ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
M. M. R. Williams
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 172-178
Technical Paper | doi.org/10.13182/NSE12-45
Articles are hosted by Taylor and Francis Online.
A new approach is developed for solving stochastic eigenvalue problems that arise when uncertainty is present in the cross-section data in a critical assembly. The method has been shown to agree with values obtained from a direct quadrature. The new approach, which uses a polynomial chaos expansion (PCE), does not involve the nonlinear equations associated with the classical method of PCE, but rather a linear equation obtained by considering an equivalent time-dependent problem; it therefore leads to much simpler calculational procedures. The convergence of the method is rapid, and it is illustrated by numerical examples based upon a criticality problem and also by comparison with a problem that uses the nonlinear method.