ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yunzhao Li, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 163-171
Technical Paper | doi.org/10.13182/NSE11-111
Articles are hosted by Taylor and Francis Online.
The isotropic simplified spherical harmonics (SP3) method is employed to cast the neutron transport equation into a coupled set of two equations each of which shares identical mathematical form with the neutron diffusion equation. An exponential function expansion nodal (EFEN) method is presented for an arbitrary triangular grid and implemented to solve the coupled SP3 equations. The EFEN method couples adjacent nodes by defining partial currents on each interface and expanding the detailed flux distribution within each node into a sum of exponential functions to obtain a response matrix between the incoming and outgoing partial currents and a neutron balance condition for each node to obtain the nodal average flux. Numerical results demonstrate that both keff and power distributions agree well with other codes. We find comparable accuracy in most situations, and the new method appears to be faster than the other codes even in cases where EFEN requires a finer unstructured mesh.