ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. H. Chen, M. L. Corradini, G. H. Su, S. Z. Qiu
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 46-59
Technical Paper | doi.org/10.13182/NSE12-22
Articles are hosted by Taylor and Francis Online.
In the present study, we propose a new fragmentation criterion for the explosion phase to take account of the effect of partial fuel melt solidification on the rapid fragmentation process. This new criterion judges whether or not the explosive fragmentation can occur by comparing the impact stress induced by vapor film collapse and water jet impingement with the fracture toughness of the corium crust layer. The fragmentation criterion was incorporated into the revised Thermal EXplosion Analysis Simulation (TEXAS) fuel-coolant-interaction (FCI) model TEXAS-VI and combined with the previously proposed fuel particle solidification model and the fragmentation criterion for the mixing phase. TEXAS-VI was compared to KROTOS alumina test K-44 and corium tests K-52 and K-53, and good agreement was obtained. The simulation results indicate that TEXAS-VI has the capability to consider the effect of partial solidification for both the mixing and the explosion phases of the FCI process and can capture the effect of fuel solidification, which reduces corium-water explosion energetics. Experiments K-52 and K-53 also demonstrate the ability of TEXAS-VI to model the effects of ambient pressure on energetics.