ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
K. D. Lathrop
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 381-388
Technical Paper | doi.org/10.13182/NSE66-A16408
Articles are hosted by Taylor and Francis Online.
To permit numerical solution of photon transport problems by the method of discrete ordinates, an anisotropic scattering approximation and a multigroup cross-section preparation recipe are selected. The incorporation of the anisotropic scattering approximation in a discrete-ordinates transport-theory code is described. Results of discrete-ordinates calculations are compared to Monte Carlo and moments-methods computations in three test problems. Flux values and leakage percentages in the different methods of solution are found to be in excellent agreement, even when a relatively low-order (four or six terms of a Legendre polynomial expansion) anisotropic scattering approximation is used in the discrete-ordinates method. In the test problems considered, the discrete-ordinates method is (computationally) nearly an order of magnitude faster than the other methods.