ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. Helholtz, W. Rothenstein
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 349-355
Technical Paper | doi.org/10.13182/NSE66-A16404
Articles are hosted by Taylor and Francis Online.
A multigroup procedure for the calculation of the fast fission phenomena in thermal uranium-water reactors has been developed. The method essentially consists of applying the single-flight collision concept in a manner analogous to the calculation of resonance capture in thermal reactor lattices. The collision and escape probabilities are calculated by numerical integration over the actual neutron paths encountered in a reactor lattice. The multigroup equations are solved by an iterative procedure which converges rapidly. The fast neutron spectrum, &dgr;28 and &hexadecimal; can be obtained. Results of calculations are presented in which the value of &dgr;28 homogeneous uranium-water mixtures and for slightly-enriched uranium-water lattices are compared with Monte Carlo calculations and experiment. Very satisfactory agreement has been obtained. Fast neutron spectra in the core of a pool type reactor and in the fuel and moderator regions of a uranium-water lattice, calculated by the present method, are also shown.