ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
J. Helholtz, W. Rothenstein
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 349-355
Technical Paper | doi.org/10.13182/NSE66-A16404
Articles are hosted by Taylor and Francis Online.
A multigroup procedure for the calculation of the fast fission phenomena in thermal uranium-water reactors has been developed. The method essentially consists of applying the single-flight collision concept in a manner analogous to the calculation of resonance capture in thermal reactor lattices. The collision and escape probabilities are calculated by numerical integration over the actual neutron paths encountered in a reactor lattice. The multigroup equations are solved by an iterative procedure which converges rapidly. The fast neutron spectrum, &dgr;28 and &hexadecimal; can be obtained. Results of calculations are presented in which the value of &dgr;28 homogeneous uranium-water mixtures and for slightly-enriched uranium-water lattices are compared with Monte Carlo calculations and experiment. Very satisfactory agreement has been obtained. Fast neutron spectra in the core of a pool type reactor and in the fuel and moderator regions of a uranium-water lattice, calculated by the present method, are also shown.