ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jorge Molina Avila, Maria Do Carmo Lopes
Nuclear Science and Engineering | Volume 96 | Number 4 | August 1987 | Pages 310-317
Technical Paper | doi.org/10.13182/NSE87-A16394
Articles are hosted by Taylor and Francis Online.
A previously developed formalism is applied to calculate the sensitivity of cobalt prompt response self-powered neutron detectors. Differential and average sensitivities in thermal and epithermal energy regions are calculated, and their dependence on the geometrical factors is studied. A simple analytical expression is proposed for the first-collision absorption probability, which is a good approximation to the exact function. This expression is used to obtain the epithermal selfshielding factor as a function of the radius of the emitter and the parameters of the interaction. The thermal sensitivity, as the main contributor to the current, is studied as a function of the emitter radius. Finally, a criterion to evaluate the accuracy of the parameters of the model is established in the form of some interval rule. This interval rule should encourage the performance of better measurements and calculations.