ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Shyn-Jen Lee
Nuclear Science and Engineering | Volume 96 | Number 3 | July 1987 | Pages 221-233
Technical Paper | doi.org/10.13182/NSE87-A16383
Articles are hosted by Taylor and Francis Online.
The neutron noise was formulated based on a multidimensional, multiregion, multigroup diffusion model. To solve for the flux fluctuations, the model was generalized and clarified using the adjoint function approach, which included checking the reciprocity relation to assure the correctness of the established adjoint function, solving the adjoint function with a finite-volume detector, and increasing the rate of convergence of the series solutions by nonlinear transform. The model was applied to a coupled core reactor to recalculate detector responses to a unidirectional vibration of a neutron absorber. The lack of agreement between the calculated results and the measurements might be partly due to some simplifications and approximations. It is recommended that measurements should be made in cases where the model can be used more feasibly.