ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
S. C. Mo, K. O. Ott
Nuclear Science and Engineering | Volume 96 | Number 2 | June 1987 | Pages 112-121
Technical Paper | doi.org/10.13182/NSE87-A16371
Articles are hosted by Taylor and Francis Online.
A practical methodology is developed to treat the resonance self-shielding transition near zone interfaces. Based on the narrow resonance approximation, a space- and energy-dependent selfshielding factor for a single interface system is derived from the integral transport theory. Using the Wigner rational approximation, the self-shielding factor for a fine region near a zone interface isfac-torized into a linear combination of individual homogeneous and heterogeneous self-shielding factors. The method has been implemented in a widely used cross-section processing code that is based on the Bondarenko f-factor method. The result of the analysis was applied to a fast reactor blanket mock-up to improve the calculations near a converter-blanket interface. Comparisons of the calculation with 238U capture experimental data measured in the Purdue Fast Breeder Blanket Facility are also discussed.