ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Helio C. Vital,* F. M. Clikeman, K. O. Ott
Nuclear Science and Engineering | Volume 96 | Number 2 | June 1987 | Pages 102-111
Technical Paper | doi.org/10.13182/NSE87-A16370
Articles are hosted by Taylor and Francis Online.
Fission rate measurements were performed in the Purdue Fast Breeder Blanket Facility (FBBF) and compared with two-dimensional 50-group diffusion calculations on an absolute basis. Fission rates in 239Pu, 235U, 237Np, 238U, and 232Th were measured using fused quartz fission track recorders. Calculations using the 1DX and 2DB codes, and the LIB-IV nuclear data library were compared with the measurements in the form of reaction rate calculated-to-experiment (C/E) trajectories. The investigations were aimed at providing an improved understanding and description of the high-energy neutron fluxes and reaction rate distributions. Also investigated were previously reported C/E reaction rate discrepancies in the blanket. Detailed analysis of the fine structure in the fission rate C/E trajectories, which drop off with increasing radius similar to previously reported C/E deviations, indicates that the transmission of neutrons through the blanket is being underpredicted to a greater degree at higher energies. Different C/E trajectories were found for different blanket configurations of the FBBF. Special computational studies, allowing fast neutron transmission and in situ effects to be separated, provided information on the sources of discrepancies.