ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
U.S. and Kazakhstan launch initiatives to facilitate SMR deployment
The United States Embassy and Consulate in Kazakhstan announced in December that the two countries are expanding their partnership in civil nuclear energy with a new educational initiative about small modular reactors.
Clifton R. Drumm, John C. Lee
Nuclear Science and Engineering | Volume 96 | Number 1 | May 1987 | Pages 17-29
Technical Paper | doi.org/10.13182/NSE87-1
Articles are hosted by Taylor and Francis Online.
The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontrya-gin’s maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem. For the one-group, onedimensional axial core model considered, the optimal distribution of the number of burnable poison pins and gadolinium concentration yields an improved power distribution. For ten axial zones of gadolinium, the maximum power peaking factor for the cycle is reduced from 1.41 for uniform gadolinium to 1.23 for the optimal gadolinium loading, a decrease of 12.8%. The axial offset band is reduced from -12.0 to 6.5% for uniform gadolinium to -4.4 to 1.0% for the optimal gadolinium loading.