ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Jaeseok Heo, Paul J. Turinsky, J. Michael Doster
Nuclear Science and Engineering | Volume 173 | Number 3 | March 2013 | Pages 293-311
Technical Paper | doi.org/10.13182/NSE11-113
Articles are hosted by Taylor and Francis Online.
This paper discusses the utilization of an uncertainty quantification methodology for nuclear power plant thermal-hydraulic transient predictions, with a focus on small modular reactors characterized by the integral pressurized water reactor design, to determine the value of completing experiments in reducing uncertainty. To accomplish this via the improvement of the prediction of key system attributes, e.g., minimum departure from nucleate boiling ratio, a thermal-hydraulic simulator is used to complete data assimilation for input parameters to the simulator employing experimental data generated by the virtual reactor. The mathematical approach that is used to complete this analysis depends upon whether the system responses, i.e., sensor signals, and the system attributes are or are not linearly dependent upon the parameters. For a transient producing mildly nonlinear response sensitivities, a Bayesian-type approach was used to obtain the a posteriori distributions of the parameters assuming Gaussian distributions for the input parameters and responses. For a transient producing highly nonlinear response sensitivities, the Markov chain Monte Carlo method was utilized based upon Bayes' theorem to estimate the a posteriori distributions of the parameters. To evaluate the value of completing experiments, an optimization problem was formulated and solved. The optimization addressed both the experiments to complete and the modifications to be made to the nuclear power plant made possible by using the increased margins resulting from data assimilation. The decision variables of the experiment optimization problem include the selection of sensor types and locations and experiment type imposing realistic constraints. The decision variables of the nuclear power plant modification optimization problem include various design specifications, e.g., power rating, steam generator size, and reactor coolant pump size, with the objective of minimizing cost as constrained by required margins to accommodate the uncertainty. Since the magnitude of the uncertainty is dependent upon the experiments via data assimilation, the nuclear power plant optimization problem is treated as a suboptimization problem within the experiment optimization problem. The experiment optimization problem objective is to maximize the net savings, defined as the savings in nuclear power plant cost due to the modified design specifications minus the cost of the experiments. Both the experiment and the nuclear power plant optimization problems were solved using the simulated annealing method.