ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jaeseok Heo, Paul J. Turinsky, J. Michael Doster
Nuclear Science and Engineering | Volume 173 | Number 3 | March 2013 | Pages 293-311
Technical Paper | doi.org/10.13182/NSE11-113
Articles are hosted by Taylor and Francis Online.
This paper discusses the utilization of an uncertainty quantification methodology for nuclear power plant thermal-hydraulic transient predictions, with a focus on small modular reactors characterized by the integral pressurized water reactor design, to determine the value of completing experiments in reducing uncertainty. To accomplish this via the improvement of the prediction of key system attributes, e.g., minimum departure from nucleate boiling ratio, a thermal-hydraulic simulator is used to complete data assimilation for input parameters to the simulator employing experimental data generated by the virtual reactor. The mathematical approach that is used to complete this analysis depends upon whether the system responses, i.e., sensor signals, and the system attributes are or are not linearly dependent upon the parameters. For a transient producing mildly nonlinear response sensitivities, a Bayesian-type approach was used to obtain the a posteriori distributions of the parameters assuming Gaussian distributions for the input parameters and responses. For a transient producing highly nonlinear response sensitivities, the Markov chain Monte Carlo method was utilized based upon Bayes' theorem to estimate the a posteriori distributions of the parameters. To evaluate the value of completing experiments, an optimization problem was formulated and solved. The optimization addressed both the experiments to complete and the modifications to be made to the nuclear power plant made possible by using the increased margins resulting from data assimilation. The decision variables of the experiment optimization problem include the selection of sensor types and locations and experiment type imposing realistic constraints. The decision variables of the nuclear power plant modification optimization problem include various design specifications, e.g., power rating, steam generator size, and reactor coolant pump size, with the objective of minimizing cost as constrained by required margins to accommodate the uncertainty. Since the magnitude of the uncertainty is dependent upon the experiments via data assimilation, the nuclear power plant optimization problem is treated as a suboptimization problem within the experiment optimization problem. The experiment optimization problem objective is to maximize the net savings, defined as the savings in nuclear power plant cost due to the modified design specifications minus the cost of the experiments. Both the experiment and the nuclear power plant optimization problems were solved using the simulated annealing method.